ar X iv : 0 80 1 . 18 58 v 1 [ m at h - ph ] 1 1 Ja n 20 08 LECTURES ON RANDOM MATRIX MODELS . THE RIEMANN - HILBERT APPROACH
نویسنده
چکیده
This is a review of the Riemann-Hilbert approach to the large N asymptotics in random matrix models and its applications. We discuss the following topics: random matrix models and orthogonal polynomials, the Riemann-Hilbert approach to the large N asymptotics of orthogonal polynomials and its applications to the problem of universality in random matrix models, the double scaling limits, the large N asymptotics of the partition function, and random matrix models with external source.
منابع مشابه
ar X iv : m at h - ph / 0 50 90 44 v 2 1 1 Ja n 20 06 RANDOM POLYNOMIALS , RANDOM MATRICES AND L - FUNCTIONS
We show that the Circular Orthogonal Ensemble of random matrices arises naturally from a family of random polynomials. This sheds light on the appearance of random matrix statistics in the zeros of the Riemann zeta-function.
متن کاملar X iv : m at h - ph / 0 20 10 24 v 1 1 0 Ja n 20 02 Eigenvalue correlations on Hyperelliptic Riemann surfaces
In this note we compute the functional derivative of the induced charge density, on a thin conductor, consisting of the union of g + 1 disjoint intervals, J := ∪ g+1 j=1 (a j , b j), with respect to an external potential. In the context of random matrix theory this object gives the eigenvalue fluctuations of Hermitian random matrix ensembles where the eigenvalue density is supported on J.
متن کاملar X iv : m at h / 04 01 12 6 v 1 [ m at h . N T ] 1 3 Ja n 20 04 THREE LECTURES ON THE RIEMANN ZETA - FUNCTION
متن کامل
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008